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Abstract 

 
In South Korea, there have been many studies on efficient building-energy management using 
renewable energy facilities in single zero-energy houses or buildings. However, such 
management was limited due to spatial and economic problems. To realize a smart zero-energy 
city, studying efficient energy integration for the entire city, not just for a single house or 
building, is necessary. Therefore, this study was conducted in the eco-friendly energy town of 
Chungbuk Innovation City. Chungbuk successfully realized energy independence by 
converging new and renewable energy facilities for the first time in South Korea. This study 
analyzes energy data collected from public buildings in that town every minute for a year. We 
propose a smart city building-energy management model based on the results that combine 
various renewable energy sources with grid power. Supervised learning can determine when 
it is best to sell surplus electricity, or unsupervised learning can be used if there is a particular 
pattern or rule for energy use. However, it is more appropriate to use reinforcement learning 
to maximize rewards in an environment with numerous variables that change every moment. 
Therefore, we propose a power distribution algorithm based on reinforcement learning that 
considers the sales of Energy Storage System power from surplus renewable energy. Finally, 
we confirm through economic analysis that a 10% saving is possible from this efficiency. 
 
 
Keywords: AI, Big Data, Building-energy Management, Energy Storage System, 
Reinforcement Learning, Renewable Energy, Smart City 
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1. Introduction 

Research on the use of renewable energy and the efficient use of energy is continuously 
conducted as a solution to the depletion of fossil fuels and for the reduction of greenhouse 
gases. Considering the current levels of resource extraction, oil is expected to be depleted in 
about 53 years, coal in 139 years, and natural gas in 49 years [1]. Therefore, various renewable 
energy markets, such as solar, tidal, and geothermal power, have begun to attract attention. 
According to an IRENA report in 2021, the current global renewable energy market in 2020 
achieved 261GW of new renewable energy power-generation capacity, an increase of 10.3% 
compared to the previous year, with a cumulative record of 2,799GW [2]. 

Solar power is leading the expansion of renewable energy supplies, taking first place among 
all renewable energy sources with 127GW from new facilities, a 22% increase compared to 
2019. Despite the increase in the manufacturing cost of solar modules due to the sharp rise in 
raw material prices, 160GW were expected from new installations in 2022 (a 17% increase 
compared to 2021), and a total of 1,100GW is expected from new installations between 2021 
and 2026 [3]. 

Energy efficiency is essential to reducing carbon dioxide emissions and supplying new and 
renewable energy, and continuous technological development is required. Improving energy 
efficiency (37%) and the dissemination of renewable energy (32%) are the primary means to 
reduce carbon emissions below 10GtCO2 by 2050 [4] [5]. To this end, several countries, 
including the United States, the United Kingdom, and Germany, are establishing and 
implementing demand-management policies in various fields, such as industry, construction, 
transportation, and equipment manufacturing. 

In particular, the Energy Storage System (ESS), which can store electricity produced from 
renewable energy for use whenever necessary, can control the grid connection and is an 
optimal technology and facility for efficient energy use [6]. Recently, the ESS industry has 
been dramatically expanding along with the supply of new and renewable energy to respond 
to the increasing demand for electricity. And smart-ESS research is continuously conducted 
using various new technologies such as the Internet of Things (IoT), the Building Management 
System (BMS), and Building Information Modeling (BIM) [7].  

Various studies have been conducted to propose efficient energy management systems 
based on time-of-use (TOU) tariffs in a multi-power environment with a variety of renewable 
energy sources, such as solar power and geothermal energy, and by using an ESS along with 
grid power [8] [9] [10]. 

The law has been amended to enable two-way electricity sales instead of the one-way sales 
structure in which consumers buy electricity from power generation companies. It is possible 
to create a two-way supply-and-demand system where energy can be bought and sold through 
the existing supply-and-demand system, which unilaterally supplies energy at a uniform unit 
price from Korea Electric Power Corporation (KEPCO). 

This study was conducted because it was determined that more efficient energy use would 
be possible through the sale of electricity between users from the existing energy uses 
management using the electricity supply price only. 

The main contents of this paper are as follows:  
Section 2 analyzes energy consumption for five public buildings in Korea’s first renewable-

energy-convergence, eco-friendly energy town in Chungcheongbuk-do in the Republic of 
Korea. In this section, we analyze building energy usage patterns from data collected every 
minute for a year from five buildings: An Integrated Control and Management Center (ICMC), 
a public health center, a nursery, a library, and a high school. 
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Section 3 proposes a building-energy management model for a smart city in a multi-power 
environment where renewable energy and grid power are mixed. Using TOU and system 
marginal price (SMP) information, we design a system that can manage energy efficiently by 
considering power distribution to and from distributed power sources, from charging and 
discharging an ESS, and from sales of surplus power. 

Section 4 proposes an AI reinforcement learning model to determine demand and the 
optimal cost of energy production. In this section, we design a smart city building-energy 
management platform and a reinforcement learning, smart city building-energy-management 
algorithm. Through a reinforcement learning model, the electricity use action of the building 
in the smart city is divided into four actions (Power use, sales, charging, and standby), and a 
cost function for the energy use environment is derived. Finally, economic feasibility is 
analyzed by applying the proposed SMP and reinforcement learning power management 
system to smart city energy data. 

2. Analysis of Power Consumption in a Zero-energy Town 

2.1. Eco-friendly energy in Korea 
Chungbuk in Chungcheongbuk-do in the Republic of Korea was Korea’s first new and 
renewable-energy convergent, energy-independent, eco-friendly project. Empirical research 
was conducted by introducing a small-scale centralized heat energy-supply system (block 
heating) concurrently using various new and renewable energy facilities. 

Energy supply to the unit area through the convergence of new and renewable energy 
facilities had never been attempted in earnest in Korea. Fig. 1 shows the green energy town of 
Chungbuk Innovation City from the sky. 
 

 
Fig. 1. An eco-friendly town built in the innovative city of Chungbuk, Republic of Korea 

 
As shown in Table 1, the eco-friendly town is a 72,000𝑚𝑚2 area composed of six public 

buildings; a plurality of new and renewable energy facilities, such as solar heat and 
photovoltaic power generation systems, are installed in the area. Seasonal thermal energy 
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storage and night thermal energy storage bridge the time gap between thermal energy supply 
and demand; a network supplying thermal energy, and a control and monitoring system are 
installed. 
 

Table 1. Overview of six public buildings in Chungbuk Innovation City 

Building ICMC Library High 
School Nursery Health 

Center 
Youth 
Center 

Total Floor Area (𝑚𝑚2) 386.98 1,986 10,432 916 248 735.90 
Building Area (𝑚𝑚2) 318.80 1,565 3,872 916 248 728.35 

Air-Conditioned Area (𝑚𝑚2) 154.64 1,601 5,068 489 217 728.35 
Stories 1 1 4 1 1 1 

Watt-hour meters (ea.) 1 5 24 4 2 - 
Sensors (ea.) 1 4 20 4 4 - 

Calorimeters (ea.) - 2 1 2 2 - 
 
To design a system for efficient energy use in multiple buildings in a heterogeneous, 

distributed power environment within a smart city (rather than for a single building), the 
energy consumption of a zero-energy town was analyzed using data collected from sensors. 

2.2. Building-energy usage analysis 
We analyzed building energy usage patterns from data collected every minute over a full year 
for five buildings in the town (the ICMC, a public health center, a nursery, a library, and a 
high school). The youth center was excluded from the analysis due to the delayed completion 
of the building. 

2.2.1. Average energy use by month, per hour, and per weekday 
We compared average energy consumption per building by year, month, day, hour, and minute. 
There was no significant difference in average energy use by year, day, and minute.  

However, analyzing the average energy consumption by month, hour, and day of the week 
found significant differences depending on the nature and characteristics of each public 
building. 

Comparing the monthly energy consumption of these five buildings, Fig. 2 confirms that 
the energy use patterns differed depending on the purpose of the building, who used it, and 
when it was used.  

Looking at the average monthly energy consumption of the ICMC, there is no significant 
difference in monthly energy consumption because it operates 24 hours a day, 365 days a year. 
The public health center and the library had similarities in that they used less energy in summer 
and more energy in winter. It can be interpreted as much heat being used for patients visiting 
the public health center and for patrons using the library. The nursery showed energy 
consumption above a certain level, except in October and November, suggesting that heating 
and cooling were continuously used to maintain constant temperatures throughout the four 
seasons because children are vulnerable to heat and cold and the changing seasons. In high 
school, energy consumption was high due to the intensive use of air conditioners in August 
(the hottest month), but other energy consumption was similar. 
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Fig. 2. Average monthly energy use for the five buildings 

 
As seen in Fig. 3, energy consumption increased from 8 a.m. to 9 a.m. (when people go to 

work or school), briefly decreased at noon (lunchtime), continued until people left work or 
school, and decreased after that. In the library and high school, energy consumption continued 
until 9 p.m. because patrons used the library after work, and high school students studied after 
school. 
 

 

 

 
Fig. 3. Average hourly energy use for the five buildings  

 
Looking at the average energy consumption by days of the week, as shown in Fig. 4, we 

can see that, except for the library, energy consumption significantly decreased on weekends 
because there was no commuting to/from work or going to/from school. However, the library 
had as many visitors on weekdays as it did on weekends. 
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Fig. 4. Average energy use for the entire town by day of the week 

 

2.2.2. Changes in building energy consumption by time period 
To understand the town’s overall energy usage patterns, the trends in hourly changes according 
to the season, month, and day of the week were analyzed. 

First, total hourly energy consumption was similar to the results of the previous analysis. 
As seen in Fig. 5, energy consumption increased sharply after 7 a.m. when it is the time to go 
to work or school and slightly decreased at noon when it is lunchtime. Consumption peaked 
at 2 p.m. and then gradually decreased until it was time to leave work or school. 
 

 
Fig. 5. Total hourly energy consumption of the town 

 
Looking at total hourly energy consumption shows the characteristics of Korea’s four 

seasons very well. Fig. 6 shows that energy consumption was highest at 2 p.m. in the summer, 
and heating was used all day long in winter, as confirmed by energy consumption above a 
certain level. 

 
Fig. 6. Total hourly energy consumption in the town according to the seasons 
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Fig. 7 shows that each building has a different 24-hour energy usage pattern by season and 
day of the week. 
 

  
Fig. 7. Average daily energy consumption for the five buildings per season and day of the week 

 

2.2.3. Correlation analysis 
To understand the correlations of energy consumption by month for each building, they are 
expressed in the heat maps shown in Fig. 8. 

 
Fig. 8. Energy usage heat maps by month for the five buildings 
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Looking at the monthly energy consumption for each time zone, we can see that the results 
are similar to seasonal energy consumption. For example, the ICMC used the most energy in 
January at 11 a.m.; the public health center during January working hours; the nursery at 2 
p.m. from February to April; the library at 9 a.m. in January, and the high school throughout 
August. 

2.2.4. Power production analysis 
Changes in electricity production according to the season were analyzed, as shown in Fig. 9. 
Looking at the electricity production graph, it is intuitive that electricity can be produced while 
the sun is up and cannot be produced from sunset to sunrise when the sun is down. 

 
Fig. 9. Power production by the time of day in each season 

2.2.5. Justification for using reinforcement learning 
In a smart city where renewable energies like solar power, geothermal energy, and fuel cells 
can be used together with grid power, it is necessary to design an efficient and economical 
building energy management system based on a heterogeneous distributed power environment.  

Therefore, in various ways, we analyzed the energy consumption of five public buildings 
in an eco-friendly energy town (Chungbuk Innovation City, South Korea). As a result of the 
analysis, it was found that it was not easy to derive uniform rules for efficient energy use 
control because each building had different energy use patterns and irregular energy 
consumption. 

Renewable energy sources do not pollute the natural environment and offer unlimited and 
permanent use. However, energy density is generally low and intermittent, making it 
challenging to produce electricity constantly. In particular, the amount of electricity generated 
from sunlight is greatly affected by weather conditions such as fog and rain, so production and 
charging cannot be constant and are impossible to predict. It is challenging to rely 100% on 
renewable energy alone, so using grid power is inevitable. 

In addition, short-term power storage facilities such as an ESS that can store surplus power 
are required, along with grid power and facilities for long-term power such as converting and 
storing hydrogen. 

The remaining energy after consumption (i.e., surplus power) can be sold at a profit, but 
the price is not constant daily. It is difficult to predict when it will be profitable to sell surplus 
power, when to use it, or when to use grid power instead. 

 Supervised learning that solves classification or regression problems from data with input 
values (problems) and output values (correct answers), or unsupervised learning that extracts 
features of the given input data to find structures or features and to select rules, is considered 
too difficult for solving this problem. We intend to solve it by applying reinforcement learning, 
which chooses a behavior that maximizes the reward from among the selectable behaviors in 
a constantly changing environment. 
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3. An Energy Management Plan for Excessive Energy Situations 

3.1. The proposed zero-energy town energy management model 
In this section, we propose an efficient and optimal building energy management system by 
applying the power distribution method in a heterogeneous distributed power environment to 
a smart city and by considering the power supply unit price and power sales price based on 
time-of-use and system marginal price information [11]. 

The proposed system connects various renewable energy sources, such as solar power, solar 
heat, and geothermal energy, with an energy storage system. In an environment where multiple 
buildings in a smart city are managed in an integrated way, more efficient and economical 
power distribution is determined through sales of excess power based on the SMP and the 
power supply unit price [12]. Using reinforcement learning, we propose a method to reduce 
energy consumption costs through the design of power consumption, charging, standby, and 
sales models. 
 

 
Fig. 10. The proposed smart city building-energy management model 

 
Fig. 10 shows a diagram of a smart city for the application of the proposed building-energy 

management system in a heterogeneous power environment [13].  
In this paper, a building energy management system using solar power is limited to using 

only the production and storage of electricity by using an ESS. The energy produced through 
solar power and the existing grid power is distributed to the buildings in the smart city by 
determining whether to use power, charge the ESS, or store power according to the integrated 
management system. 

3.2. Building energy management using SMP and TOU 
SMP refers to the price at which generated electricity is sold to the Korea Electric Power 
Corporation (the grid) through the Korea Power Exchange (KPX). 
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Fig. 11. Determination of Korea’s electricity market price (the SMP) [14] 

 
The electricity market price in the Republic of Korea is determined in hourly units on the 

day before the transaction. It is decided at the point where the demand predicted the day before 
meets the generator’s power generation supply bid. The transaction price is determined at a 
point where the price desired by the buyer meets the price offered by the seller. 

Vendors who sell electricity incur different costs when generating electrical energy from 
different sources. These costs vary depending on the type of power source (oil, LNG, coal, 
nuclear) and the cost of power generation. Therefore, the SMP is the price set for smooth sales 
and supply by setting an appropriate limit based on the average cost of power generation. 
 

 
Fig. 12. Hourly electricity demand in the Republic of Korea determining the SMP [15] 

 
The SMP offers the advantage of being able to plan for energy use because the price is 

provided for 24 hours on the day before power is needed. On the other hand, since the cost of 
each power generation source is considered first based on the SMP formulation principle, it is 
most affected by the global oil price and the government’s energy policy, so the disadvantage 
is volatility. 
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Fig. 13.  Monthly SMP for 10 years, and the SMP over a 24-hour period [16] 

 

 
Fig. 14. Building-energy management system using SMP and TOU information in a heterogeneous 

distributed power environment. 
 
Fig. 14 is a conceptual diagram of a building-energy management system for a smart city by 
using SMP and TOU information. The proposed building-energy management system 
monitors the distributed power, including the existing grid power, renewable energy such as 
solar power, and an ESS through an integrated Power Conversion System (PCS). A Power 
Management Server (PMS) provides the PCS with the optimal power distribution method 
based on SMP and TOU information. Through this, the use, charging, and sale of each 
distributed power source are determined, and power distribution is performed in a way that 
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maximizes energy efficiency. 

3.3. Power distribution algorithm using SMP and TOU 
For efficient power distribution in a heterogeneous distributed power environment, we propose 
an algorithm that applies power sales by considering SMP information as well as renewable 
energy, grid power, and the ESS. 

The proposed power distribution algorithm’s flow chart, shown in Fig. 15, is designed to 
determine the use or sale of energy, or charging the ESS, by comparing the current TOU 
information (the power supply price) and the SMP information (electricity sale price). It is 
intended to improve efficiency by adding sales of power to the existing power distribution 
method by using the TOU-information-based power supply standard time period. 

In this paper, electricity sales are considered by using SMP information in the existing 
simple electricity distribution method, which was classified by time period based on demand. 
We propose an efficient and economical algorithm using reinforcement learning to determine 
the power usage pattern, and we compare and verify the performance against existing studies. 
 

 
Fig. 15. Power distribution method comprising heterogeneous distributed power sources using SMP 

and TOU information [11] 
 

Because the SMP is set based on the cost of each power generation source, it is inevitably 
affected by changing international oil prices and the government’s energy policy. Since the 
SMP does not have characteristics of time series data, like the existing energy usage data, there 
is a limit to applying previously used prediction models. 

Therefore, in this study, it was judged efficient and effective to apply a reinforcement 
learning model that generates the optimal policy by reflecting the experience of judgment to 
the problem [17] [18] [19]. 
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Table 2. Comparison of a TOU-based algorithm and the proposed SMP power-distribution method 

Power load TOU-based Algorithm TOU/SMP-based Algorithm 

Light  Charge the ESS 

Mid-peak 

ㆍ 09:00~13:00: 
Use Renewable Energy 
ㆍ 18:00~23:00: 
Use Grid Power 

ㆍ TOU>SMP: 
Use Renewable Energy and ESS 
ㆍ TOU<SMP: 
Sell Renewable Energy and ESS 

Peak  Use Renewable Energy and ESS 

ESS and Solar 
Power Unavailable Use Grid Power 

 

4. Proposed AI reinforcement learning model for the optimal cost of 
energy production and demand 

4.1. Reinforcement learning-based smart city building-energy management 
Reinforcement learning is a type of machine learning. There is an agent and an environment, 
and learning is carried out in a way that maximizes the reward given according to the state of 
the environment as changed by the actor acting on the environment [20]. 

Model-based reinforcement learning is used when all information about a given 
environment, such as state, state transition probability, reward, behavior, and depreciation rate, 
is known. On the other hand, model-free reinforcement learning is used when only partial 
information is known [21]. 

If all information about the environment is known (Model Based), the value of the state 
value function of MDP (Markov Decision Process) can be calculated as follows, considering 
all actions and all states according to all fixed policies. 
 

 𝑣𝑣𝜋𝜋(𝑠𝑠) =  � 𝜋𝜋(𝑎𝑎|𝑠𝑠)
𝑎𝑎∈𝐴𝐴

𝑅𝑅𝑠𝑠𝑎𝑎 +  𝛾𝛾� 𝜋𝜋(𝑎𝑎|𝑠𝑠)� 𝑃𝑃𝑠𝑠𝑠𝑠′
𝑎𝑎

𝑠𝑠′∈𝑆𝑆
𝑣𝑣𝜋𝜋(𝑠𝑠′)

𝑎𝑎∈𝐴𝐴
 (1) 

 
The Monte-Carlo Method is one of the most frequently used methods when information 

about the environment is insufficient (Model Free), such as when the Reward Function and 
State Transition Probability are not known, especially when the next state is not known. The 
state value function of MC (Monte-Carlo Method) uses the average of the returned values as 
the state value function.  

First, the agent is operated on until the episode ends. After an episode ends, the count N is 
incremented by one. All return values collected during the episode are stored in variable S 
(cumulative return value). Unlike MDP, it does not consider all actions and states, only the 
actions performed during an episode and the states the agent has passed through. Finally, by 
dividing the cumulative return value by the cumulative count and taking the average, we can 
calculate the state value function. A fixed policy can be evaluated with the value of the state 
value function calculated in this way. 
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𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝑉𝑉(𝑠𝑠) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑁𝑁(𝑠𝑠) → ∞ 
Cumulative Count: 𝑁𝑁(𝑠𝑠) ← 𝑁𝑁(𝑠𝑠) + 1 (perform one episode) 

Cumulative Return: 𝑆𝑆(𝑠𝑠) ← 𝑆𝑆(𝑠𝑠) + 𝐺𝐺𝑡𝑡 
Average Return: 𝑉𝑉(𝑠𝑠) ← 𝑆𝑆(𝑠𝑠)/𝑁𝑁(𝑠𝑠) 

(2) 

 
Representative examples of model-free reinforcement learning include Q-learning and 

Policy Optimization techniques. In Q-learning, a value function is obtained to derive a policy 
in value-based reinforcement learning. Then, it finds the Q value to create a policy that selects 
the action that produces the largest Q value. However, this method is unsuitable for optimizing 
energy use because it always finds only the maximum value [22]. Therefore, this study used 
the policy optimization technique, a policy-based reinforcement learning that learns policies 
directly [23] [24]. 

The policy neural network objective function 𝐽𝐽(𝜃𝜃) of Policy Gradient is a function that can 
calculate the value that can be obtained from a selected action through the policy function  
𝜋𝜋𝜃𝜃(𝑠𝑠,𝑎𝑎)  composed of the same variable 𝜃𝜃 . Since it means the value of the policy, the 
maximum value is found using the gradient ascent method. 

Considering only a one-time step in the MDP value function, it can be expressed as the 
following value function. 
 

 𝑣𝑣𝜋𝜋(𝑠𝑠) =  � 𝜋𝜋(𝑎𝑎|𝑠𝑠)
𝑎𝑎∈𝐴𝐴

𝑅𝑅𝑠𝑠𝑎𝑎 (3) 

 
Expressed as a policy objective function using the value function of One Step MDP, it is 

as follows.  
 

 𝐽𝐽(𝜃𝜃) =  � 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)
𝑎𝑎∈𝐴𝐴

𝑅𝑅𝑠𝑠𝑎𝑎 (4) 

 
Policy Gradient uses the gradient ascent method to find θ that can make the result of the 

policy objective function the largest.  
 

 ∇𝜃𝜃𝐽𝐽(𝜃𝜃) =  � ∇𝜃𝜃𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝑅𝑅𝑠𝑠𝑎𝑎
𝑎𝑎∈𝐴𝐴

 (5) 

 
The policy objective function can be expressed as follows using the concept of the 

likelihood ratio.  
 

 ∇𝜃𝜃𝐽𝐽(𝜃𝜃) =  � 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) ∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝑅𝑅𝑠𝑠𝑎𝑎
𝑎𝑎∈𝐴𝐴

 (6) 

 
Also, by changing the first part of the above formula to the expected value, it can be 

expressed as:  
 

 ∇𝜃𝜃𝐽𝐽(𝜃𝜃) =  𝐸𝐸𝜋𝜋𝜃𝜃[∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝑅𝑅𝑠𝑠𝑎𝑎] (7) 
 
Using stochastic gradient descent (SGD) using sampling, the following policy gradient 

objective function can be obtained. 
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 ∇𝜃𝜃𝐽𝐽(𝜃𝜃) ≈ ∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝑟𝑟 (8) 
 

 
Fig. 16. The proposed reinforcement learning-based building-energy Management platform 

 
Fig. 16 shows the proposed building energy management platform in which the Monte 

Carlo policy gradient algorithm, one of the policy gradient algorithms, was used. 
As a component of this platform, there is a Policy Artificial Neural Network (Policy ANN) 

that expresses policy, and there is a policy that is the output value of Policy ANN. This policy 
consists of the result of the Softmax function. There is an environment where the action (𝑎𝑎𝑡𝑡) 
obtained through the policy is executed, and a learning data area stores the reward (including 
delayed reward) obtained through the policy and environment. Finally, it consists of a cost 
function for policy ANN training. 

The Monte Carlo policy gradient algorithm consists of two steps. One is to collect training 
data while running the agent until the episode ends, and the other is to learn the policy ANN 
using the collected training data. 

First, the state (𝑆𝑆𝑡𝑡) is entered into the Policy ANN to determine the agent's action. In the 
state, TOU cost information and SMP cost information data, as well as energy usage and 
renewable energy generation information, are transmitted to the system. Then, the Policy ANN 
executes the Softmax function and returns a policy. After the episode ends, the result value of 
the policy ANN is stored in the learning data area to be used for learning the policy ANN. 

Then, the action with the largest weight (𝑎𝑎𝑡𝑡) is selected so that the agent can operate in the 
environment. The agent uses the policy of the Policy ANN to calculate the gain for actions 
such as energy use, charging, waiting, and selling and decides whether to perform it.  

The environment returns a reward (𝑟𝑟𝑡𝑡+1 ) and a state (𝑆𝑆𝑡𝑡+1 ) as a result of the action 
performed by the agent. Rewards are also stored in the learning data area for policy ANN 
learning. The previous process is repeated until the episode ends by entering the following 
state (𝑆𝑆𝑡𝑡+1) into the policy ANN. 

After the episode, the policy ANN is learned using the data stored in the learning data area. 
During the episode, the Softmax function result value and the return value for the reward 
(cumulative reward discounted by the depreciation rate) must have accumulated as much as 
the time step the agent operated during the episode. 
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Then, a pair of Softmax function results and the return value are taken from the training 
data area and inputted into the cost function to calculate the value. Finally, by adding a minus 
sign in front of the cost function, we find the maximum value of the policy function represented 
by the policy ANN through gradient descent. Then, while learning in the direction of 
minimizing the cost function, it learns as a policy ANN that expresses a more efficient policy. 

The proposed energy management system determines power distribution for heterogeneous 
distributed power sources and performs efficient energy management by considering excess-
power sales based on the SMP. In addition, the cost function can be derived through 
reinforcement learning, and the energy-saving effect can be predicted. 

4.2. The building-energy management algorithm 
In this paper, an efficient model for ESS use is proposed and implemented in a reinforcement-
learning-based heterogeneous distributed power environment. The model divides power 
consumption behavior into four operations (power use, sales, charging, and standby), and a 
cost function is created considering the SMP and TOU systems. 

By applying power usage behavior and ESS power status to the actions and rewards from 
reinforcement learning, the power usage action is taken in actual building energy use, and the 
cost function for the energy usage environment is derived. The model was designed to 
economically judge the result of the cost function according to behavior and learn it to increase 
profits. 

In this paper, cost gains and losses are calculated from the decision on whether to use the 
ESS based on what was learned, on the actual ESS power consumption, on all the power used, 
on the current and past TOU prices, and on the current SMP price. Immediate/delayed rewards 
for actions performed in the present/past are determined according to the cost gain and loss, 
and they are reflected in the neural network. 

Rewards are either immediate or delayed. An immediate reward is based on a result that 
can be confirmed immediately, and a delayed reward is collected when results that could not 
be confirmed at the time are confirmed later. Determination of the delayed reward is made 
with a separate reward criterion. The delayed reward is governed by a certain threshold and is 
determined when the gain or loss obtained through the learning process exceeds the threshold. 

Immediate rewards are reflected in the policy neural network and learning proceeds. In the 
case of a delayed reward, the environment states, and the actions performed until receiving the 
delayed reward, are generated as batch training data, and the neural network is updated by 
applying the generated batch training data. 

After learning, the weights of the neural network are updated, and the result of the updated 
neural network is reflected in the subsequent execution process. If the standard for a delayed 
reward is set low, training is likely undertaken multiple times with a small batch of data. When 
the standard for the delayed reward is set high, batch learning is performed a small number of 
times using a large amount of batch learning data. 
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Fig. 17. Flowchart of the reinforcement learning process [18] 

 

4.3. The smart city building-energy management module 
Nomenclature 

𝒕𝒕 Time in the current state 

𝑼𝑼 

A variable containing the action of the ESS as determined by policy 
- Use: Amount of ESS power consumption 
- Charging: Amount of ESS power charge 
- Sales: Amount of ESS power sales 

𝑻𝑻𝑻𝑻𝑻𝑻𝒕𝒕 TOU base price at time t (kWh/KRW) 
𝑺𝑺𝑺𝑺𝑺𝑺𝒕𝒕 SMP reference price at time t (kWh/KRW) 

𝑬𝑬𝑬𝑬𝑬𝑬𝑻𝑻𝑻𝑻𝑻𝑻𝒕𝒕 ESS power consumption TOU price at time t (kWh/KRW) 
𝑬𝑬𝒕𝒕 Total amount of energy used at time t 

𝑨𝑨𝑨𝑨𝒕𝒕𝑨𝑨𝑻𝑻𝑨𝑨𝑨𝑨𝑨𝑨𝑬𝑬𝑻𝑻𝑨𝑨𝒕𝒕𝒕𝒕 Cost as a result of the action performed at time t (KRW) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒕𝒕 Cumulative cost of ESS power charging at time t (KRW) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒕𝒕 Amount of ESS power at time t (kWh) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑨𝑨𝒕𝒕 Rate of ESS power retention at time t 
𝑷𝑷𝑬𝑬𝒕𝒕 ESS usage gain at time t (KRW) 
𝑩𝑩𝑷𝑷𝑬𝑬𝒕𝒕 ESS usage gain in a past time (KRW) 
𝑷𝑷𝑬𝑬𝑨𝑨𝒕𝒕 Proportion of gain by using ESS 

𝑩𝑩𝑬𝑬𝒕𝒕 
TOU cost used at time t 
𝐸𝐸𝑡𝑡 × 𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡 

𝑩𝑩𝑬𝑬𝑬𝑬𝒕𝒕 
TOU accumulated cost used up to time t 
𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡−1 + 𝐵𝐵𝐵𝐵𝑡𝑡 

𝑨𝑨𝑬𝑬𝑬𝑬𝒕𝒕 Accumulated cost of power consumption action up to time t 
𝑨𝑨𝑨𝑨𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑨𝑨𝑹𝑹𝒕𝒕𝑨𝑨𝑻𝑻 Weight of fluctuation (ex. -5% or +5%) 

𝑨𝑨𝑨𝑨𝒕𝒕𝑨𝑨𝑻𝑻𝑨𝑨𝑨𝑨𝑹𝑹𝒕𝒕𝑨𝑨𝑻𝑻𝒕𝒕 
The fluctuation rate of the current ESS value compared to the standard 
ESS value 
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4.3.1. Action definition and implementation details 
An agent performs a direct action on the environment, receives data defined in the environment, 
acts according to a set policy, and updates the policy while receiving immediate rewards and 
delayed rewards through the cost function. 

The actions performed by the agent are classified based on using the power of the ESS, and 
are divided into four categories: use, sale, charging, and standby. 
 

Table 3. Actions according to the type of ESS power use 

Action Building power usage 
status 

ESS 
status 

Grid power usage 
status 

Use 
ESS ESS discharge (Use) Not in Use 

ESS + Grid Power ESS discharge (Use) Use 

Sale Grid Power ESS discharge (Sales) Use 

Charging Grid Power ESS charging Use 

Standby Grid Power ESS standby Use 

 
The agent takes action after receiving from the neural network a decision on ESS energy 

consumption based on the action to be performed. In addition, it is necessary to determine if 
the corresponding action can be performed; if it is possible, it is performed. If it cannot be 
performed, the instruction given by the policy neural network is rejected, and ESS reverts to 
standby. 

Determination of how much power from the ESS is used is reflected in the confidence 
value, which is a probability value indicating the reliability of the action taken according to 
the exploration or selection by the neural network, and it is necessary to determine the 
percentage of power to use (expressed as U) from between the minimum and maximum usage 
values. 

Actions to use ESS power refer to states in which the building either uses the ESS for the 
required electricity or it uses the ESS and grid power at the same time. At this time, the ESS 
is in the discharge state (Use). After checking the amount of power remaining in the ESS, it 
can be used to cover some or all of the required power. This action is mainly performed under 
mid-peak and peak load conditions. 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑒𝑒𝑠𝑠𝑇𝑇𝑙𝑙𝐴𝐴𝑡𝑡 = �(𝐸𝐸𝑡𝑡 − 𝑈𝑈) × 𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡� + (𝑈𝑈 × 𝐸𝐸𝑠𝑠𝑠𝑠𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡)     (9) 
 

The action for ESS power sales is where the building uses grid power for the required 
electricity, and it sells energy stored in the ESS to make a profit. At this time, the ESS is in a 
discharge state (Sales). This action is taken when the SMP cost is higher than the TOU cost 
and while power remains in the ESS. 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑒𝑒𝑠𝑠𝑇𝑇𝑙𝑙𝐴𝐴𝑡𝑡 = (𝐸𝐸𝑡𝑡 × 𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡)− (𝑈𝑈 × (𝑆𝑆𝑚𝑚𝑆𝑆𝑡𝑡 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡)) (10) 
 

Charging the ESS is where the required electricity in the building is covered by grid power, 
and the ESS is charged with grid power for future use. At this time, the ESS is in the charging 
state. This action is taken when the ESS is not fully charged, and the TOU cost is lower than 
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the SMP. 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑒𝑒𝑠𝑠𝑇𝑇𝑙𝑙𝐴𝐴𝑡𝑡 = (𝐸𝐸𝑡𝑡 × 𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡) + (𝑈𝑈 × 𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡) (11) 
 

The ESS in standby uses grid power in the building to cover the required power, and this 
state is for situations excluding power use, sale, and charging. 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑒𝑒𝑠𝑠𝑇𝑇𝑙𝑙𝐴𝐴𝑡𝑡 =  𝐸𝐸𝑡𝑡 × 𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡 (12) 
 

4.3.2. States and rewards 
The agent's status is defined by the ESS's current power retention ratio and the energy use 

gain ratio. 
 

 𝐸𝐸𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡 =  
𝐸𝐸𝑠𝑠𝑠𝑠𝑉𝑉𝑡𝑡

( 𝐸𝐸𝑠𝑠𝑠𝑠𝐵𝐵𝑡𝑡𝑇𝑇𝑙𝑙𝑇𝑇𝑡𝑡
 )

 (13) 

 
Equation 13 shows the power retention ratio of the ESS: ESS power consumption at time t 

[over] ESS power consumption rate at time t [divided by] TOU standard price at time t. It is 
calculated to obtain the ESS power retention ratio. 
 

 𝑃𝑃𝑉𝑉𝑅𝑅𝑡𝑡 =  
𝑃𝑃𝑉𝑉𝑡𝑡
𝐵𝐵𝑃𝑃𝑉𝑉𝑡𝑡

 (14) 

 
Equation 14 shows the gain ratio according to use of the ESS: (Gain of ESS use at time t / 

Gain of ESS use at time t-i). 
Rewards and delayed rewards for the action performed are determined using the gain from 

ESS use at time t and the gain from use of the ESS before time t, respectively. The states in 
which an immediate benefit can be obtained from ESS power use are the use of ESS power 
and the sale of ESS power. The rewards obtained from ESS power charging and standby 
cannot be collected immediately, but both must be paid as a delayed reward depending on the 
subsequent situation. To pay a reward and a delayed reward, the power use gain of the current 
time is defined. 
 

 𝑃𝑃𝑉𝑉𝑡𝑡 = (𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 + 𝐸𝐸𝑠𝑠𝑠𝑠𝐵𝐵𝑡𝑡)−  𝐴𝐴𝐵𝐵𝐵𝐵𝑡𝑡 (15) 
 

To derive the power use gain due to the time t action, calculate [(accumulated TOU cost 
used up to time t + the accumulated amount of power charging charges of the ESS remaining 
after performing the action time t) – the power usage action used up to time t cumulative cost]. 

By reflecting the cost to charge the ESS compared to the fee obtained by using only the 
TOU rate system, the benefits obtained are confirmed. 
 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡 =  
(𝑃𝑃𝑉𝑉𝑡𝑡 −  𝑃𝑃𝑉𝑉𝑡𝑡−𝑖𝑖)

𝑃𝑃𝑉𝑉𝑡𝑡−𝑖𝑖
 (16) 

 
The fluctuation rate of the current ESS value relative to the ESS value based on time t was 

calculated as [(the gain of power use of action at time t – the gain of power use of action at 
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time t-i) / the gain of power use of action at time t-i]. 
The gain from power use from action performed at time i is updated whenever there is a 

decision to pay the delayed reward. 
 

 𝑨𝑨𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒 =  �    1,   𝐴𝐴𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡  ≥ 0
 −1,   𝑙𝑙𝐴𝐴ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝐴𝐴𝑠𝑠𝑒𝑒                       (17) 

 
For an immediate reward, 1 is paid if 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡 is greater than or equal to 0, and -1 is 

paid in other cases. 
 

 𝐷𝐷𝑒𝑒𝑙𝑙𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒 =  �
     1, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡 > 𝑅𝑅𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙 
−1,  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡 < 𝑅𝑅𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙
 0, 𝑙𝑙𝐴𝐴ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝐴𝐴𝑠𝑠𝑒𝑒                                        

 (18) 

 
For a delayed reward, the defined 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡  is paid by comparing it with 

𝑅𝑅𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙, which is the range of compensation fluctuations defined by reinforcement 
learning. If 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡  is greater than 𝑅𝑅𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙 , 1 is paid; if it is less than 
𝑅𝑅𝑒𝑒𝑤𝑤𝑎𝑎𝑟𝑟𝑒𝑒𝑅𝑅𝑎𝑎𝐴𝐴𝐴𝐴𝑙𝑙, -1 is paid; if equal, 0 is paid. 

4.4. Economic analysis of the proposed model 
To verify an efficient building energy management system in a reinforcement-learning-based 
heterogeneous distributed power environment, the energy usage fee for the ESS power usage 
derived from the algorithm based on the time period defined in the TOU policy and the 
proposed reinforcement-learning-based model was compared. 

Economic feasibility analysis was conducted using energy data collected from five 
buildings in operation in a smart city (zero-energy town): Chungbuk Innovation City, 
Chungcheongbuk-do, Republic of Korea. Using the cost function derived using reinforcement 
learning, the results of the efficiency analysis for total energy use of the buildings in the smart 
city for one year are as follows. 
 

 
Fig. 18. Monthly electricity usage fees according to the ESS operation method 

 
Fig. 18 shows a graph of monthly electricity usage rates according to the ESS operation 

method. As seen in the graph, both the TOU-based algorithm and the reinforcement learning 
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model show similar fluctuations. 
Overall, we can see that reinforcement learning models have similar or less cost compared 

to the TOU-based algorithm in most cases. There is no significant difference between the two 
graphs in winter (January, February) and summer (June, July, and August) when electricity 
consumption is high due to heating and cooling, respectively. 

However, we confirmed that the reinforcement learning model can obtain higher gains in 
spring (March, April, and May) and autumn (September, October, and November). 

As seen from the comparison table of monthly electricity usage charges and the final result 
of the economic analysis, the ESS operation method based on reinforcement learning achieved 
10.05% higher efficiency compared to the state without ESS operation, and 1,090,629 KRW 
could be saved. In addition, we confirmed 2.9% greater efficiency and that 315,940 KRW can 
be saved compared to TOU-based ESS operations. 

4.5. Analyzing the availability and complementation of the proposed model 

The result shows economic benefits from the proposed reinforcement learning-based energy 
management system model. In addition, reinforcement learning can solve even if information 
about the given environment is insufficient and the correct answer to the problem is unknown. 

Each of the five buildings had different energy usage patterns, it was challenging to predict 
SMP (power supply unit cost) in advance, and it was not easy to find which ESS action was 
the best at what time and under what conditions. 

This study shows the possibility of optimizing energy use through reinforcement learning 
by converging information from various sensors in a more complex energy environment in the 
future. 

However, since the policy is derived only from data obtained through interaction with the 
environment, more data and countless learning attempts are required for the efficiency and 
stability of the model. 

In addition, it is necessary to cope with the uncertainty of the model or to secure stability 
during parameter identification, as the risk burden is high to perform energy management 
control by applying it to an actual physical system. 

The pre-designed reward function for reinforcement learning is a single scalar function, 
which makes it challenging to reflect complex systems. Therefore, finding an appropriate 
reward function according to various policies is necessary. 

5. Conclusion 
In this paper, we analyzed building energy usage patterns by using data collected every minute 
for a year for five public buildings in Korea’s first renewable energy eco-friendly energy town. 
Based on analysis results, an energy management model for a smart city was proposed. 

An efficient and optimal smart city building-energy management system was proposed in 
consideration of the power supply unit price and sales price based on TOU and SMP 
information in a heterogeneous distributed power environment. Using reinforcement learning, 
ESS power usage, charging, standby, and sales models were designed, and a plan to reduce 
energy consumption costs was proposed. 

That efficient energy management is possible (based on energy consumption, ESS power 
consumption, TOU price, SMP price, and the selection of an ESS operation method suitable 
for the time) was demonstrated using energy data collected from five buildings in operation in 
the smart city. 
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As interest in the use of new and renewable energy increases as a countermeasure against 
the depletion of fossil fuels and climate change, it is thought that various studies using an ESS 
as well as energy-saving measures must continue. 

It is common sense to minimize electricity waste in existing power plants or from excess 
electricity generated. Efficient building-energy management in smart cities is expected to be 
possible through research on ESS utilization for power trading and sharing by various users in 
a heterogeneous power environment including ESS charging and discharging, by using electric 
vehicles, and through surplus power trading between users. 

A sustainable smart city inevitably becomes a heterogeneous multi-power environment 
with various renewable energies, such as solar power, geothermal energy, and wind power, as 
well as from grid power. Building-energy management through electricity supply and 
electricity sales using an ESS between various types of buildings and various users is quite 
complex, and there are many variables to consider. For efficient and economical optimal 
energy management, the study of ESS charging/discharging models using reinforcement 
learning is likely to be utilized as a major technology for optimal ESS operations in the future. 
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